Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Death Discov ; 7(1): 81, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863878

RESUMO

Both tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins. DYRK1A inhibition leads to the accumulation of cyclin B and activation of CDK1. Importantly, we established that the phenotypic response of glioblastoma cells to DYRK1A inhibition depends on both retinoblastoma (RB) expression and the degree of residual DYRK1A activity. Moderate DYRK1A inhibition leads to moderate cyclin B accumulation, CDK1 activation and increased proliferation in RB-deficient cells. In RB-proficient cells, cyclin B/CDK1 activation in response to DYRK1A inhibition is neutralized by the RB pathway, resulting in an unchanged proliferation rate. In contrast, complete DYRK1A inhibition with high doses of inhibitors results in massive cyclin B accumulation, saturation of CDK1 activity and cell cycle arrest, regardless of RB status. These findings provide new insights into the complexity of context-dependent DYRK1A signalling in cancer cells.

2.
Neuropharmacology ; 187: 108478, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33600843

RESUMO

BACKGROUND AND PURPOSE: Consumption of Synthetic Cannabinoid Receptor agonists (SCRAs) is associated with severe adverse reactions including seizures, arrhythmias and death, but the molecular mechanisms surrounding SCRA toxicity are not yet established. These disease-like symptoms are also synonymous with altered T-type calcium channel activity which controls rhythmicity in the heart and brain. This study examined whether SCRAs alter T-type activity and whether this represents a possible mechanism of toxicity. EXPERIMENTAL APPROACH: Fluorescence-based and electrophysiology assays were used to screen 16 structurally related synthetic cannabinoids for their ability to inhibit human T-type calcium channels expressed in HEK293 cells. The most potent compounds were then further examined using patch clamp electrophysiology. KEY RESULTS: MDMB-CHMICA and AMB-CHMINACA potently blocked Cav3.2 with IC50 values of 1.5 and 0.74 µM respectively. Current inhibition increased from 47 to 80% and 45-87% respectively when the channel was in slow-inactivated state. Both SCRAs had little effect on steady state inactivation, however MDMB-CHMICA significantly shifted the half activation potential by -7mV. Neither drug produced frequency dependent block, in contrast to the phytocannabinoid Δ9-THC. CONCLUSIONS AND IMPLICATIONS: SCRAs are potent agonists of CB1 receptors and can be extremely toxic, but observed toxicity also resembles symptoms associated with altered Cav3.2 activity. Many SCRAs tested were potent modulators of Cav3.2, raising the possibility that SC toxicity may be due in part to Cav3.2 modulation. This potent T-type channel modulation suggests the possibility of SCRAs as a new drug class with potential to treat diseases associated with altered T-type channel activity. This article is part of the special issue on 'Cannabinoids'.


Assuntos
Canais de Cálcio Tipo T/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Indóis/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo T/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Indazóis , Técnicas de Patch-Clamp
3.
Br J Pharmacol ; 176(24): 4653-4665, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31412133

RESUMO

BACKGROUND AND PURPOSE: The morbidity and mortality associated with recreational use of synthetic cannabinoid receptor agonists (SCRAs) may reflect strong activation of CB1 receptors and is a major health concern. The properties of SCRA at CB1 receptors are not well defined. Here we have developed an assay to determine acute CB1 receptor efficacy using receptor depletion with the irreversible CB1 receptor antagonist AM6544, with application of the Black and Leff operational model to calculate efficacy. EXPERIMENTAL APPROACH: Receptor depletion in mouse AtT-20 pituitary adenoma cells stably expressing human CB1 receptors was achieved by pretreatment of cells with AM6544 (10 µM, 60 min). The CB1 receptor-mediated hyperpolarisation of AtT-20 cells was measured using fluorescence-based membrane potential dye. From data fit to the operational model, the efficacy (τ) and affinity (KA ) parameters were obtained for each drug. KEY RESULTS: AM6544 did not affect the potency or maximal effect of native somatostatin receptor-induced hyperpolarization. The τ value of ∆9 -THC was 80-fold less than the reference CB receptor agonist CP55940 and 260-fold less than the highest efficacy SCRA, 5F-MDMB-PICA. The operational efficacy of SCRAs ranged from 233 (5F-MDMB-PICA) to 28 (AB-PINACA), with CP55940 in the middle of the efficacy rank order. There was no correlation between the τ and KA values. CONCLUSIONS AND IMPLICATIONS: All SCRAs tested showed substantially higher efficacy at CB1 receptors than ∆9 -THC, which may contribute to the adverse effects seen with these drugs but not ∆9 -THC.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Cicloexanóis/farmacologia , Drogas Ilícitas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Camundongos , Receptor CB1 de Canabinoide/antagonistas & inibidores
4.
Drug Test Anal ; 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29350472

RESUMO

Synthetic cannabinoids are the largest and most structurally diverse class of new psychoactive substances, with manufacturers often using isomerism to evade detection and circumvent legal restriction. The regioisomeric methoxy- and fluorine-substituted analogs of SDB-006 (N-benzyl-1-pentyl-1H-indole-3-carboxamide) were synthesized and could not be differentiated by gas chromatography-mass spectrometry (GC-MS), but were distinguishable by liquid chromatography-quadrupole time-of-flight-MS (LC-QTOF-MS). In a fluorescence-based plate reader membrane potential assay, SDB-006 acted as a potent agonist at human cannabinoid receptors (CB1 EC50 = 19 nM). All methoxy- and fluorine-substituted analogs showed reduced potency compared to SDB-006, although the 2-fluorinated analog (EC50 = 166 nM) was comparable to known synthetic cannabinoid RCS-4 (EC50 = 146 nM). Using biotelemetry in rats, SDB-006 and RCS-4 evoked comparable reduction in body temperature (~0.7°C at a dose of 10 mg/kg), suggesting lower potency than the recent synthetic cannabinoid AB-CHMINACA (>2°C, 3 mg/kg).

5.
Drug Test Anal ; 10(1): 196-205, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28371476

RESUMO

Indole or indazole-based synthetic cannabinoids (SCs) bearing substituents derived from valine or tert-leucine are frequently abused new psychoactive substances (NPS). The emergence of 5F-MDMB-PICA (methyl N-{[1-(5-fluoropentyl)-1H-indol-3-yl]carbonyl}-3-methylvalinate) on the German drug market is a further example of a substance synthesized in the context of scientific research being misused by clandestine laboratories by adding it to 'legal high' products. In this work, we present the detection of 5F-MDMB-PICA in several legal high products by gas chromatography-mass spectrometry (GC-MS) analysis. To detect characteristic metabolites suitable for a proof of 5F-MDMB-PICA consumption by urine analysis, pooled human liver microsome (pHLM) assays were performed and evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) techniques to generate reference spectra of the in vitro phase I metabolites. The in vivo phase I metabolism was investigated by the analysis of more than 20 authentic human urine specimens and compared to the data received from the pHLM assay. Biotransformation of the 5-fluoropentyl side chain and hydrolysis of the terminal methyl ester bond are main phase I biotransformation steps. Two of the identified main metabolites formed by methyl ester hydrolysis or mono-hydroxylation at the indole ring system were evaluated as suitable urinary biomarkers and discussed regarding the interpretation of analytical findings. Exemplary analysis of one urine sample for 5F-MDMB-PICA phase II metabolites showed that two of the main phase I metabolites are subject to extensive glucuronidation prior to renal excretion. Therefore, conjugate cleavage is reasonable for enhancing sensitivity. Commercially available immunochemical pre-tests for urine proved to be unsuitable for the detection of 5F-MDMB-PICA consumption. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Canabinoides/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Drogas Ilícitas/urina , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Canabinoides/química , Canabinoides/metabolismo , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Cromatografia Gasosa-Espectrometria de Massas/normas , Humanos , Drogas Ilícitas/química , Drogas Ilícitas/metabolismo , Urinálise/métodos , Urinálise/normas
6.
ACS Chem Neurosci ; 8(10): 2159-2167, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28792725

RESUMO

Synthetic cannabinoids (SC) are the largest class of new psychoactive substances (NPS), and are increasingly associated with serious adverse effects. The majority of SC NPS are 1,3-disubstituted indoles and indazoles featuring a diversity of subunits at the 1- and 3-positions. Most recently, cumyl-derived indole- and indazole-3-carboxamides have been detected by law enforcement agencies and by emergency departments. Herein we describe the synthesis, characterization, and pharmacology of SCs CUMYL-BICA, CUMYL-PICA, CUMYL-5F-PICA, CUMYL-PINACA, CUMYL-5F-PINACA, and related analogues. All cumyl-derived SCs were potent, efficacious agonists at CB1 (EC50 = 0.43-12.3 nM) and CB2 (EC50 = 11.3-122 nM) receptors in a fluorometric assay of membrane potential, with selectivity for CB1 activation (3.1-53 times over CB2). CUMYL-PICA and CUMYL-5F-PICA were evaluated in rats using biotelemetry, and induced hypothermia and bradycardia at doses of 1 mg/kg. Hypothermia was reversed by pretreatment with a CB1, but not CB2, antagonist, confirming that cumyl-derived SCs are cannabimimetic in vivo.


Assuntos
Canabinoides/farmacologia , Indóis/química , Triazinas/química , Animais , Canabinoides/química , Fármacos do Sistema Nervoso Central/farmacologia , Cromatografia Líquida/métodos , Humanos , Hipotermia/induzido quimicamente , Camundongos , Estrutura Molecular , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas
7.
ACS Chem Neurosci ; 8(8): 1673-1680, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28574245

RESUMO

Synthetic cannabinoids (SCs) containing a 1-pentyl-1-H substituted indole or indazole are abused around the world and are associated with an array of serious side effects. These compounds undergo extensive phase 1 metabolism after ingestion with little understanding whether these metabolites are contributing to the cannabimimetic activity of the drugs. This work presents the synthesis and pharmacological characterization of the major metabolites of two high concern SCs; APICA and ADB-PINACA. In a fluorometric assay of membrane potential, all metabolites that did not contain a carboxylic acid functionality retained potent activity at both the CB1 (EC50 = 14-787 nM) and CB2 (EC50 = 5.5-291 nM) receptors regardless of heterocyclic core or 3-carboxamide substituent. Of note were the 5-hydroxypentyl and 4-pentanone metabolites which showed significant increases in CB2 functional selectivity. These results suggest that the metabolites of SCs potentially contribute to the overall pharmacological profile of these drugs.


Assuntos
Adamantano/análogos & derivados , Canabinoides/farmacologia , Indazóis/farmacologia , Indóis/farmacologia , Adamantano/síntese química , Adamantano/química , Adamantano/metabolismo , Adamantano/farmacologia , Canabinoides/síntese química , Canabinoides/química , Canabinoides/metabolismo , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/metabolismo , Indóis/síntese química , Indóis/química , Indóis/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Estrutura Molecular , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo
8.
Forensic Toxicol ; 34: 286-303, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547266

RESUMO

Indazole-derived synthetic cannabinoids (SCs) featuring an alkyl substituent at the 1-position and l-valinamide at the 3-carboxamide position (e.g., AB-CHMINACA) have been identified by forensic chemists around the world, and are associated with serious adverse health effects. Regioisomerism is possible for indazole SCs, with the 2-alkyl-2H-indazole regioisomer of AB-CHMINACA recently identified in SC products in Japan. It is unknown whether this regiosiomer represents a manufacturing impurity arising as a synthetic byproduct, or was intentionally synthesized as a cannabimimetic agent. This study reports the synthesis, analytical characterization, and pharmacological evaluation of commonly encountered indazole SCs AB-CHMINACA, AB-FUBINACA, AB-PINACA, 5F-AB-PINACA and their corresponding 2-alkyl-2H-indazole regioisomers. Both regioisomers of each SC were prepared from a common precursor, and the physical properties, 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry, and ultraviolet-visible spectroscopy of all SC compounds are described. Additionally, AB-CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA were found to act as high potency agonists at CB1 (EC50 = 2.1-11.6 nM) and CB2 (EC50 = 5.6-21.1 nM) receptors in fluorometric assays, while the corresponding 2-alkyl-2H-indazole regioisomers demonstrated low potency (micromolar) agonist activities at both receptors. Taken together, these data suggest that 2-alkyl-2H-indazole regioisomers of AB-CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA are likely to be encountered by forensic chemists and toxicologists as the result of improper purification during the clandestine synthesis of 1-alkyl-1H-indazole regioisomers, and can be distinguished by differences in gas chromatography-mass spectrometry fragmentation pattern.

9.
ACS Chem Neurosci ; 7(9): 1241-54, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27421060

RESUMO

Indole and indazole synthetic cannabinoids (SCs) featuring l-valinate or l-tert-leucinate pendant group have recently emerged as prevalent recreational drugs, and their use has been associated with serious adverse health effects. Due to the limited pharmacological data available for these compounds, 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues were synthesized and assessed for cannabimimetic activity in vitro and in vivo. All SCs acted as potent, highly efficacious agonists at CB1 (EC50 = 0.45-36 nM) and CB2 (EC50 = 4.6-128 nM) receptors in a fluorometric assay of membrane potential, with a general preference for CB1 activation. The cannabimimetic properties of two prevalent compounds with confirmed toxicity in humans, 5F-AMB and MDMB-FUBINACA, were demonstrated in vivo using biotelemetry in rats. Bradycardia and hypothermia were induced by 5F-AMB and MDMB-FUBINACA doses of 0.1-1 mg/kg (and 3 mg/kg for 5F-AMB), with MDMB-FUBINACA showing the most dramatic hypothermic response recorded in our laboratory for any SC (>3 °C at 0.3 mg/kg). Reversal of hypothermia by pretreatment with a CB1, but not CB2, antagonist was demonstrated for 5F-AMB and MDMB-FUBINACA, consistent with CB1-mediated effects in vivo. The in vitro and in vivo data indicate that these SCs act as highly efficacious CB receptor agonists with greater potency than Δ(9)-THC and earlier generations of SCs.


Assuntos
Canabinoides/farmacologia , Indazóis/química , Indóis/química , Receptor CB1 de Canabinoide/agonistas , Analgésicos/química , Analgésicos/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Canabinoides/química , Cicloexanóis/química , Cicloexanóis/farmacologia , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Humanos , Indazóis/farmacologia , Indóis/farmacologia , Leucina/análogos & derivados , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/química , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/química , Valina/análogos & derivados , Valina/química , Valina/farmacologia
10.
ACS Chem Neurosci ; 6(9): 1546-59, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26134475

RESUMO

Synthetic cannabinoid (SC) designer drugs based on indole and indazole scaffolds and featuring l-valinamide or l-tert-leucinamide side chains are encountered with increasing frequency by forensic researchers and law enforcement agencies and are associated with serious adverse health effects. However, many of these novel SCs are unprecedented in the scientific literature at the time of their discovery, and little is known of their pharmacology. Here, we report the synthesis and pharmacological characterization of AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, 5F-ADBICA, and several analogues. All synthesized SCs acted as high potency agonists of CB1 (EC50 = 0.24-21 nM) and CB2 (EC50 = 0.88-15 nM) receptors in a fluorometric assay of membrane potential, with 5F-ADB-PINACA showing the greatest potency at CB1 receptors. The cannabimimetic activities of AB-FUBINACA and AB-PINACA in vivo were evaluated in rats using biotelemetry. AB-FUBINACA and AB-PINACA dose-dependently induced hypothermia and bradycardia at doses of 0.3-3 mg/kg, and hypothermia was reversed by pretreatment with a CB1 (but not CB2) antagonist, indicating that these SCs are cannabimimetic in vivo, consistent with anecdotal reports of psychoactivity in humans.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Drogas Desenhadas/farmacologia , Indazóis/farmacologia , Indóis/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular Tumoral , Estudos de Coortes , Drogas Desenhadas/síntese química , Drogas Desenhadas/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Indazóis/síntese química , Indazóis/química , Indóis/síntese química , Indóis/química , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Estrutura Molecular , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo
11.
ACS Chem Neurosci ; 6(8): 1445-58, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25921407

RESUMO

Synthetic cannabinoid (SC) designer drugs featuring bioisosteric fluorine substitution are identified by forensic chemists and toxicologists with increasing frequency. Although terminal fluorination of N-pentyl indole SCs is sometimes known to improve cannabinoid type 1 (CB1) receptor binding affinity, little is known of the effects of fluorination on functional activity of SCs. This study explores the in vitro functional activities of SC designer drugs JWH-018, UR-144, PB-22, and APICA, and their respective terminally fluorinated analogues AM-2201, XLR-11, 5F-PB-22, and STS-135 at human CB1 and CB2 receptors using a FLIPR membrane potential assay. All compounds demonstrated agonist activity at CB1 (EC50 = 2.8-1959 nM) and CB2 (EC50 = 6.5-206 nM) receptors, with the fluorinated analogues generally showing increased CB1 receptor potency (∼2-5 times). Additionally, the cannabimimetic activities and relative potencies of JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135 in vivo were evaluated in rats using biotelemetry. All SCs dose-dependently induced hypothermia and reduced heart rate at doses of 0.3-10 mg/kg. There was no consistent trend for increased potency of fluorinated SCs over the corresponding des-fluoro SCs in vivo. Based on magnitude and duration of hypothermia, the SCs were ranked for potency (PB-22 > 5F-PB-22 = JWH-018 > AM-2201 > APICA = STS-135 = XLR-11 > UR-144).


Assuntos
Canabinoides/química , Canabinoides/farmacologia , Drogas Desenhadas/química , Drogas Desenhadas/farmacologia , Adamantano/análogos & derivados , Adamantano/química , Adamantano/farmacologia , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipotermia/induzido quimicamente , Indóis/química , Indóis/farmacologia , Masculino , Camundongos , Estrutura Molecular , Naftalenos/química , Naftalenos/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Telemetria
12.
ACS Chem Neurosci ; 4(7): 1081-92, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23551277

RESUMO

Two novel adamantane derivatives, adamantan-1-yl(1-pentyl-1H-indol-3-yl)methanone (AB-001) and N-(adamtan-1-yl)-1-pentyl-1H-indole-3-carboxamide (SDB-001), were recently identified as cannabimimetic indoles of abuse. Conflicting anecdotal reports of the psychoactivity of AB-001 in humans, and a complete dearth of information about the bioactivity of SDB-001, prompted the preparation of AB-001, SDB-001, and several analogues intended to explore preliminary structure-activity relationships within this class. This study sought to elucidate which structural features of AB-001, SDB-001, and their analogues govern the cannabimimetic potency of these chemotypes in vitro and in vivo. All compounds showed similar full agonist profiles at CB1 (EC50 = 16-43 nM) and CB2 (EC50 = 29-216 nM) receptors in vitro using a FLIPR membrane potential assay, with the exception of SDB-002, which demonstrated partial agonist activity at CB2 receptors. The activity of AB-001, AB-002, and SDB-001 in rats was compared to that of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) and cannabimimetic indole JWH-018 using biotelemetry. SDB-001 dose-dependently induced hypothermia and reduced heart rate (maximal dose 10 mg/kg) with potency comparable to that of Δ(9)-tetrahydrocannabinol (Δ(9)-THC, maximal dose 10 mg/kg), and lower than that of JWH-018 (maximal dose 3 mg/kg). Additionally, the changes in body temperature and heart rate affected by SDB-001 are of longer duration than those of Δ(9)-THC or JWH-018, suggesting a different pharmacokinetic profile. In contrast, AB-001, and its homologue, AB-002, did not produce significant hypothermic and bradycardic effects, even at relatively higher doses (up to 30 mg/kg), indicating greatly reduced potency compared to Δ(9)-THC, JWH-018, and SDB-001.


Assuntos
Adamantano/análogos & derivados , Adamantano/farmacocinética , Indóis/farmacologia , Adamantano/síntese química , Adamantano/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Canabinoides/farmacocinética , Frequência Cardíaca/efeitos dos fármacos , Humanos , Indóis/síntese química , Camundongos , Ratos
13.
Drug Test Anal ; 4(5): 330-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21901849

RESUMO

Conventional chemical profiling of methylamphetamine has long been employed by national forensic laboratories to determine the synthetic route and where possible the precursor chemicals used in its manufacture. This laboratory has been studying the use of stable isotope ratio mass spectrometry (IRMS) analysis as a complementary technique to conventional chemical profiling of fully synthetic illicit drugs such as methylamphetamine. As part of these investigations the stable carbon (δ(13) C), nitrogen (δ(15) N), and hydrogen (δ(2) H) isotope values in the precursor chemicals of ephedrine and pseudoephedrine and the resulting methylamphetamine end-products have been measured to determine the synthetic origins of methylamphetamine. In this study, results are presented for δ(13) C, δ(15) N, and δ(2) H values in methylamphetamine synthesized from ephedrine and pseudoephedrine by two synthetic routes with varying experimental parameters. It was demonstrated that varying parameters, such as stoichiometry, reaction temperature, reaction time, and reaction pressure, had no effect on the δ(13) C, δ(15) N, and δ(2) H isotope values of the final methylamphetamine product, within measurement uncertainty. Therefore the value of the IRMS technique in identifying the synthetic origin of precursors, such as ephedrine and pseudoephedrine, is not compromised by the potential variation in synthetic method that is expected from one batch to the next, especially in clandestine laboratories where manufacture can occur without stringent quality control of reactions.


Assuntos
Estimulantes do Sistema Nervoso Central/síntese química , Drogas Ilícitas/síntese química , Espectrometria de Massas , Metanfetamina/síntese química , Isótopos de Carbono/química , Estimulantes do Sistema Nervoso Central/química , Deutério/química , Efedrina/síntese química , Efedrina/química , Drogas Ilícitas/química , Metanfetamina/química , Isótopos de Nitrogênio/química , Pseudoefedrina/síntese química , Pseudoefedrina/química
14.
Drug Test Anal ; 2(11-12): 557-67, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20967879

RESUMO

Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is the preferred method of confirming the administration of exogenous testosterone by athletes. This relies on synthetic testosterone preparations being depleted in (13) C compared to natural testosterone. There is concern, however, about the existence of synthetic testosterone products that are unexpectedly (13) C-enriched and which may allow athletes to circumvent the current GC-C-IRMS test. Further to the reported studies of legitimate pharmaceutical-grade testosterone products, a detailed analysis of seized materials from border-level seizures was required to obtain intelligence concerning trends in 'black market' testosterone manufacture and distribution. The sample set collected for this study between 2006 and 2009 inclusive provided a δ(13) C range (n = 266) of -22.9‰ to -32.6‰ with mean and median values of -28.4‰ and -28.6‰, respectively. Within this distribution there were 24 samples (9%) confirmed to have δ(13) C values in the range reported for endogenous urinary steroid metabolites (≥ -25.8‰). The benefit of δ(13) C profiling for testosterone preparations was demonstrated by the ability to identify specific seized products that can be target tested for future intelligence purposes. In addition, the potential of stable hydrogen isotope ratio ((2) H/(1) H; δ(2) H) discrimination to complement δ(13) C analysis was investigated. Methodologies for the determination of δ(2) H values by gas chromatography-thermal conversion-isotope ratio mass spectrometry (GC-TC-IRMS) were developed to provide a δ(2) H range (n = 173) of -177‰ to -268‰ with mean and median values of -231‰ and -234‰, respectively.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Preparações Farmacêuticas/química , Testosterona/análise , Isótopos de Carbono/análise , Deutério/análise , Desenho de Equipamento , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Drogas Veterinárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...